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Abstract

A small laboratory diagnostic thruster was developed to augment present low thrust
chemical rocket optical and heat flux diagnostics at the NASA Lewis Research Center.
The objective of this work was to evaluate approaches for the use of temperature and
pressure sensors for the investigation of low thrust rocket fiow fields. The nominal engine
thrust was 110 N. Tests were performed at chamber pressures of about 255 kPa, 370
kPa, and 500 kPa with oxidizer to fuel mixture ratios between 4.0 and 8.0. Two gaseous

hydrogen�gaseous oxygen injector designs were tested with 60% and 75% fuel film
cooling. The thruster and instrumentation designs were proven to be effective via hot fire
testing. The thruster diagnostics provided inner wall temperature and static pressure
measurements which were compared to the thruster global performance data. For

several operating conditions, the performance data exhibited unexpected trends which
were correlated with changes in the axial wall temperature distribution. Azimuthal

temperature distributions were found to be a function of operating conditions and
hardware configuration. The static pressure profiles showed that no severe pressure
gradients were present in the rocket. The results indicated that small differences in
injector design can result in dramatically different thruster performance and wall

temperature behavior, but that these injector effects may be overshadowed by operating
at a high fuel film cooling rate.

Copyright © 1993 by the American Institute of Aeronautics, Inc. No copyright is asserted in the United States under Title 17, U.S. Code. The U.S.
Government has a royalty-free license to exercise all rights under the copyright claimed herein for Government purposes. All other rights reserved by the
copyright owner.



Introduction

Low thrust propulsion systems are on-board virtually every launch and space vehicle,

satellite, and spacecraft, and perform such duties as apogee insertion, attitude control,

docking, and separation. Changes in spacecraft performance, lifetime, reliability, and

contamination requirements are forcing continued development of low thrust chemical

engine technology. To address these technology requirements, improved predictive tools,

specifically designed for smaU rockets, are essential.

Current design tools do not fully address the complex fluid and combustion processes of

small rockets. Most high thrust rocket models assume the rocket behaves as an inviscid

core with a thin boundary layerl, 2. For relatively large rockets, these are good

assumptions and result in accurate predictions of rocket performance. However, for small

rockets with thrust levels below 4500 N mixing in the boundary and shear layers and

combustion effects are more dominant phenomena. Therefore, severe thermal, velocity,

and species gradients can exist in small rockets which must be included in the design

process.

Large engine codes have been used for modeling small rockets with mixed results.

Richter and Price 3 found that the predictions for small hydrogen/oxygen rockets did not

compare well with experimental results. Smith et al. 4 tested a high area ratio nozzle

engine which had a relatively thick boundary layer flow field and also found that the Joint

Army, Navy, NASA, Air Force (JANNAF) rocket engine performance prediction code 5

used in conjunction with the reference code, Two Dimensional Kinetics (TDK) program6,

did not agree with experimental results. Kehtarnavaz and Coats 2 compared TDK 6 and

various other codes for modeling thick boundary layer flow field rockets and found the

thin boundary layer assumptions used were inadequate for modeling the flows. Although

more comprehensive codes using Navier-Stokes analyses are being developed7,8,9, there

is currently a lack of local flow field data to use for code development and verification.

This deficiency of experimental data is largely due the lack of a sustained program to

gather and analyze local flow field data for small rockets.

This paper describes the design and preliminary test results of a small laboratory thruster

developed to augment present opticall0,11,12 and heat flux 13 diagnostics for low thrust

chemical rockets at NASA Lewis Research Center. The thruster provides simple

measurements of interior wall temperatures and static pressures for the purpose of

evaluating rocket flow fields. Previous works have also used simple diagnostic
2



techniquesto evaluaterocket flow fields. SchoenmanandBlock14hot fire testedseveral

enginesinstrumentedwith axial and azimuthal thermocoupleswhich were brazed or
welded into place.Back et al.15usedtranslatingpitot tubeand thermocoupleprobesto

studythe boundarylayer andheattransfer in a conicalnozzlerunning with pressurized,
heatedair. Richter and Price3 testeda low thrust gaseoushydrogen/gaseousoxygen,

regeneratively cooled thruster and measuredchamber exterior wall temperatures.

Kacynskiet al.16conducteda heatflux analysisof a higharearationozzleandmeasured

nozzleexterior(backside)wall temperatureswith spotweldedthermocouples.Rousarand
Ewen17had a fairly comprehensivetemperaturemeasurementssystemwith axial and

azimuthaltemperaturemeasurementsfor a thin walled chamberwhich wascooledonly

by theinternalfilm cooling.

Although simple diagnostic techniques were employed in the past, most engine

diagnosticswereweldedor brazedinto place,andazimuthaltemperaturemeasurements
wereoften limited to a few axial locations.The water-cooledgaseoushydrogen/oxygen

laboratorythrusterdiscussedin this paperemployedinstrumentationdesignedfor easeof

maintenanceand repair. The instrumentation and thruster joint sealing techniques

requiredto providemaximumflexibility for instrumentationreplacementaredescribedin

this paper.The thrusterprovided axial pressureand axial and azimuthal temperature
distributionsin the combustor,throat, andnozzlesections.Testingwasconductedwith

two injector designswhich employed fuel film cooling (FFC) to protect the chamber

wall. Comparisonsof the global performancedata to local temperatureand pressure

measurementsweremade.The azimuthalperformanceof theinjectors andeffectsdueto

differencesin injectordesignand fuel film cooling rateswerealsoinvestigated.

Apparatus and Procedure

Chamber

The thruster liner and outer housing were fabricated from Oxygen Free High

Conductivity (OFHC) copper. The thruster was designed to deliver 110 N thrust at a

nominal chamber pressure (Pc) of 500 kPa. The overall thruster length was 20.3 cm with

a 2.54 cm diameter chamber, a 1.27 cm diameter throat, and a nozzle expansion area ratio

of 33:1. The nozzle was conical with a nominal 19 ° half angle. A conical nozzle was used

instead of an optimized bell nozzle contour to simplify the thruster fabrication.



Thelaboratorythrusterusedaninstrumentationproceduredevelopedto accommodatethe

water cooling design. Instrumentationdetailsareshownin Figure 1. The thruster was
watercooledusingmilled channelson thebacksideof the liner asshownin Figure l(a).

Thechannelswere0.032cm high by 0.032cm wide.Thewall thicknessfrom thebottom

of thechannelsto the hot gassidesurfacewasalso0.032cm.Therewere 11channelsin
the combustionchamberand throat section which bifurcated into 22 channelsin the

nozzle.A typical bifurcatedchannelis illustratedin Figure l(a). Thechannelbifurcation

ensureduniform cooling of the large nozzle surface area. A clam shell type outer housing

slid over the liner and was joined to the liner at the water inlet and outlet manifolds

shown in Figure 2, and along the two axial seams where the outer housing was split. The

clam shell housing style was chosen because it allowed the chamber, throat, and nozzle to

be fabricated in one piece. The thruster joints were soldered using a high temperature

solder. Brazing was not desirable because the thermal cycle required to braze would have

degraded the structural integrity of the copper. Welding was also not feasible due to the

high conductivity of OFHC copper. The solder joints were reinforced by bolts at the

water manifold flanges. While the lower temperature limit of the solder joints were a

concern prior to a hot fire testing, there were no signs of water leakage after the

completion of the tests.

Se_soFs

The laboratory thruster had 30 thermocouples located in 4 rows spanning the combustor

and nozzle sections. The axial and azimuthal locations of the thermocouples are identified

in Figure 2. Typical thermocouple rows and the ports are shown in Figures l(a) and l(b),

respectively. As seen in Figure l(b), the instrumentation ports were located in the channel

lands, which were located between cooling channels. While the exterior liner wall mated

tightly to the interior wall of the outer housing, the exterior liner wall (channel lands)

were not bonded to the outer jacket. Therefore, a water seal was required in the

instrumentation ports. The chromel-alumel thermocouples were nominally 0.80 mm in

diameter. The 0.85 mm diameter thermocouple ports were drilled to within 0.76 mm of

the hot gas side surface. The small size of the instrumentation ports made it difficult to

verify the port tolerances. Therefore, thermocouple measurements were carefully

assessed to ensure that temperature anomalies were not due to thermocouple placement.
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Figure 1(c) is anexplodedview of a typical thermocoupleinstallation.The graphitefoil

washersealedwateron thebacksideof the liner.Graphitefoil materialwasusedbecause

of its high temperaturelimit. Thefluorinatedpolymerwasherwasusedto preventwater

from leakingthroughthebacksideof theouterhousing.Thefluorinatedpolymersealfor

the liner fitting sealedthe water which flows betweenthe liner fitting and the outer

housingfitting. The sealcapandfluorinatedpolymer sealweredrilled throughto allow

insertionof a liner fitting. Thefittings wereinstalledafterthe thrusterouterhousingand

liner werejoined. The liner fitting and graphitefoil washerwere installedfirst. A pipe

sealing compoundmixed with a fluorinated polymer and graphitewas applied to the

threadsto provide addedsealingcapability.The sealingcap and outer housing fitting

with the fluorinated polymer washerslid over the liner fitting. The thermocouplewas

theninsertedthroughthefittings andsecuredin placeby thethermocouplespring.

The staticpressureportsusedthesameinstrumentationportsandinstrumentationfittings

as the thermocouples.The pressureports were drilled throughthe liner wall andwere

0.85 mm in diameter.The liner fitting shown in Figure 1(c) was usedasthe pressure

sensingline andconnectedto tubing which terminatedat the pressuretransducers.The

pressure transducers were located outside of the vacuum tank. The pressure

measurementswere monitoredcarefully to ensuresteadystatepressureconditions were

achievedduringtesting.

The instrumentation fabrication and assembly techniques greatly simplified the

replacementof faulty sensors. The replacementof a damagedthermocouple only

requiredtheunfasteningof thespringandinsertionof a newthermocouple.In caseof a

water leak, repair of the sealingsurfacessimply required unscrewingthe fittings and

insertingnew washers.All of the instrumentationwaseasily replaced,andrepairswere

madein situ without removal of the engine from the test stand.

Injectors

Two platelet injectors designed by Aerojet GenCorp Propulsion Division 18 were used to

verify operation of the laboratory thruster. The injectors were part of a Space Station

Freedom low-thrust, gaseous hydrogen/gaseous oxygen rocket technology program and

were originally designed to be tested with a regeneratively cooled thruster. 18 The two

injectors, designated SN. 02 and SN. 03, were nearly identical designs. Injector SN. 02

was modified in-house to improve ignition reliability by enlarging the gap at the base
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which preventedthesparkplugfrom arcingat thebase.However, in astudyby Arrington

and Reed19using the modified SN. 02 injector, performanceanomalieswere observed.

The unmodified injector SN. 03 was testedso that any performance,wall temperature,

andpressurechangesdueto injector designcouldbe identified.

The propellant flow pathsfor both injectorsareshownin Figure 3. The oxygenentered

througha plateletstackandwas injectedradially towardthe sparkplug, upstreamof the

spark plug tip. The hydrogen entereda fuel manifold within the injector/combustor

cavity. Part of the hydrogen enteredthe platelet stack and was injected radially just
downstreamof the sparkplug tip. The remaininghydrogenflowed down milled channels

on thefuel film cooling sleeve.A fuel splitting washer,locatedagainstthe flange of the

fuel f'tlm cooling sleeve,determinedthe percentageof hydrogenwhich flowed down the

sleeve.At theexit of thefuel film cooling sleeve,thechambercontained an oxidizer rich

core of combustion gases surrounded by a hydrogen cooling film. Both platelet injectors

were designed for fuel film cooling using 60% of the total fuel flow rate, a nominal

chamber pressure (Pc) of 500 kPa, and a mixture ratio (MR) of 8.0. The injectors were

also tested at fuel film cooling rates of 75% FFC by changing the fuel splitting washer to

compare global and local changes due to fuel film cooling variation.

The core mixture ratios were above stoichiometric for every test condition, and cab be

calculated as the overall mixture ratio divided by the quantity of one minus the fuel film

cooling faction. Therefore, the core flow contained mixture ratios between MR of 10 and

20 with 60% FFC, and between MR of 16 and 32 with 75% FFC. All mixture ratios

reported in this paper refer to the total fuel and oxidizer flows.

Test Facility

The testing was performed in the NASA Lewis Research Center RL-11 test cell. A

schematic of the RL-11 is shown in Figure 4. The RL-11 test cell was capable of testing

gaseous hydrogen/gaseous oxygen chemical rockets at thrust levels up to 220 N. The

altitude capsule was a 0.9 m diameter and 1.8 m long tank. A two stage, air driven

ejector system pumped the tank down to a soft vacuum of 1.4 kPa. During a hot fire test,

the exhaust gases were fired into a water cooled diffuser. Downstream of the diffuser, the

hot gases were cooled by a spray cart prior to entering the ejectors. A personal computer

based data acquisition system received and displayed measured and calculated parameters



on display screens.Datawererecordedon strip charts,FM tape,andfloppy disks. An

extensivediscussionof thefacility is found in Reference20.

Results and Discussion

Chamber and Sensor Operations

The laboratory thruster diagnostics were used to assess different injectors and fuel f'dm

cooling rates through their effects upon wall temperature and static pressure profiles.

After the completion of 396 hot fire tests, the thruster instrumentation proved to have

good water sealing capability and good accessibility for in situ maintenance and repairs.

Minimal water leakage was experienced, and water leak repairs were made in a matter of

a few hours. Thermocouple replacements were accomplished in a few minutes. Also, wall

temperature measurements showed no evidence of localized heating or distortion of the

thruster. No leaks from the thruster liner and outer housing joints were detected. Because

of the high water cooling flow rate of 0.693 kg/s, there was a concern that every test

condition would be forced to the same wall temperature distribution. However, the test

results proved that the thermocouples could detect temperature changes resulting from

differences in injector and/or fuel film cooling rate. Another concern was that

inaccuracies in thermocouple placement would introduce large measurement

uncertainties. However, extensive testing revealed no biases in the wall temperature

measurements, and the azimuthal temperature profile symmetry varied widely depending

upon the test conditions and fuel film cooling rates. These results show that the

anomalies of the azimuthal temperature profiles, discussed below, were due to real flow

field effects.

Azimuthal Symmetry

Azimuthal symmetry is a key assumption in the modeling of rocket engine flow fields.

Therefore, the degree of azimuthal symmetry in the flows must be determined to ensure

an accurate rocket model. Azimuthal temperature profiles were measured as a function of

operating conditions for the two injectors. Both injectors were tested with the chamber

illustrated in Figures 1 and 2, and used the same fuel sleeve and fuel splitting washers.

The only known difference between the two injectors was the small modification made
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on SN. 02 described earlier, which was not anticipated to have effects upon the azimuthal

symmetry. The azimuthal temperature distributions for both injectors, which are shown in

Appendix A, showed clearly that the symmetry varied with test condition for both

injectors. For a given test condition, the two injectors exhibited different azimuthal

temperature patterns except at the high mixture ratio, 75% FFC tests, where both injectors

displayed similar, azimuthally symmetric temperature profiles. The observed

temperature profiles implied that small differences in injector designs may have large

impacts on local flow field characteristics of small rockets. The variation of azimuthal

symmetry with test conditions was an important finding which must be investigated

further to support both the definition of manufacturing processes and the development of

accurate rocket flow field models for low thrust chemical engines.

Although the azimuthal temperature profiles were not symmetric in most cases for either

injector, the trends in the axial temperature distribution were similar for different

azimuthal locations (thermocouple rows), and for specific thermocouples. In addition,

the temperature measurements for a given operating condition were very reproducible

from one test to another. This is illustrated in Appendix A by comparing results from

typical thermocouple rows and single thermocouple locations. In order to simplify the

presentation of the results, only data from thermocouple row B are used to display the

behavior of the wall temperature measurements. Results for all other thermocouple rows

were similar.

Performance Measurements

Thruster performance was measured to allow comparison with the local data. Figures 5

and 6 show the variations in characteristic velocity (C*) and vacuum specific impulse

(Ispv), respectively, with mixture ratio for the two thruster assemblies for FFC of 60% and

75%. The C'and Ispv data were nearly identical, therefore only the Ispv results will be

discussed below.

For 60% FFC, thruster assembly SN. 03 performed better than SN. 02 at lower mixture

ratios as shown in Figure 6, but performance differences diminished above MR=5.0. Ispv

decreased linearly with increasing mixture ratio for the SN. 03 thruster assembly. The

SN. 02 thruster performance curve decreased monotonically with increasing MR, but was

not linear. The performance deviated from that of injector SN. 03 for MR below 6.0.



For FFC=75%the Ispv dataexhibited similar trends for both thrusterassemblies.The

FFC=75%performancedatadid notdecreasemonotonically.BetweenMR of 5.0and6.0

theIspvvaluesincreasedlocally nearMR of 6.0.The SN.03 thrusterexhibitedlower Ispv

valuesthantheSN.02 thrusterfor all MRstested.

The performancechangeswith increasingMR for both the SN. 02 and SN. 03 thruster
assemblieswith 60% and75% FFC fell into threecategories.The first was the linear

decreasein Ispvof the SN. 03 thrusterwith 60%FFC. This behaviorwassimilar to the

trendsobservedin a previousstudyby Reedet al.21The secondcategorywas the slight
deviation from the linear profile exhibited by the SN. 02 thrusterassemblywith 60%

FFC,andthethirdwas thehighly non-monotonicbehaviorof thetwo thrusterassemblies
with 75% FFC. This substantial variation in thruster performance behavior with

changingMR ledto adetailedexaminationof wall temperaturedistribution behavior.

Temperature Measurements

The axial temperature distributions for mixture ratios between 4 and 8 are shown in

Figures 7 through 10. The thruster injector exit plane was at -3.81 cm and the throat was

located at 0.0 cm. Figure 7 shows the axial temperature distributions for the SN.03

thruster assembly with 60% FFC. All the temperature profiles in Figure 7 followed a

similar axial distribution pattern. The temperature sensitivity to MR was evident only in

the combustor and throat sections. As shown in Figure 11, the temperature in the

converging section (location B3) of the SN.03 thruster assembly generally decreased

with MR. In the nozzle section the temperature variation disappeared.

The axial temperature distributions for the SN. 02 thruster assembly with 60% FFC

(Figure 8) exhibited similar temperature profiles to those of Figure 7 for MR's above 6.0.

However, for the lower MR tests the temperature distribution changed, resulting in lower

wall temperatures than those obtained with MR above 6.0. The temperature profiles in

Figure 8 exhibited much greater sensitivity to MR than was observed in Figure 7. The

disparity in wall temperature was pronounced in the combustor and throat sections and

was sustained in the nozzle section in contrast to the data in Figure 7. The temperature

generally increased (Figure 11) with increasing MR, in contrast to the SN. 03, FFC 60%

FFC results with decreased monotonically.



Figures9 and10showtheaxial temperatureprofiles from the75% FFC testsfor theSN.

03 and SN. 02 thrusterassemblies,respectively.The two thrusterassembliesexhibited

nearly identical temperatureprofiles. The shapeof the profiles were similar to thoseof

Figure7. However,for the75% FFCtestswall temperaturesdecreaseddrasticallyfor MR

below6.0. Thesensitivityto MR appearsto havebeensustainedthroughoutthenozzlein

the form of two distinct groupingsof temperatureprofiles. For 75% FFC, both thruster

assembliesexhibitedsimilar temperaturevariationswith MR (Figures11).

Static Pressure Measurements

The static pressure distribution measurements for both injectors are shown in Figures 12

and 13. All the static pressure profiles were similar, and gave no indication of shocks or

boundary layer separation. This result indicates that the temperature trends were

dominated by mixing and/or shear layer interactions particular to injector design and fuel

film cooling rates, and did not result from pressure gradients in the flow.

Low Chamber Pressure Results

Thus far, the results discussed have been restricted to comparisons of injector designs

tested under two FFC rates with the laboratory thruster at the design chamber pressure of

nominally 500 kPa. Injector SN. 02 underwent additional testing at off-design chamber

pressures of nominally 255 and 370 kPa for the purpose of testing the thruster diagnostics

at the lower Pc conditions. Typical Ispv performance data at the lower chamber pressures

for 60% and 75% FFC are shown in Figure 14. The performance curves showed large

non-monotonic behavior near a mixture ratio of 6.0 at 75% FFC. The trends for the 60%

FFC tests showed only a slight non-monotonic behavior near a MR of 8.0 at Pc of 255

and 370 kPa. The corresponding temperature profiles shown in Figure 15 showed

changes at the same operating conditions at which performance changes occurred.

Temperatures increased significantly near MR of 6.0 for 75% FFC tests. For the 60%

FFC tests, a significant temperature increase was observed between MR of 7.0 and 8.0

which corresponded to the non-monotonic behavior seen in Figure 14 near MR of 8.0.

These low chamber pressure tests indicated that the diagnostic measurements continued

to produce trends which support the global performance data at low chamber pressure

conditions.
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Comparison of Global and Local Data

The performance data of Figure 6 obtained from the SN. 03 thruster assembly with 60%

FFC exhibited a nearly linear decreasing trend with increasing MR. The corresponding

temperature profiles are shown in Figure 7. All the profiles of Figure 7 displayed the

same axial temperature distribution, with a small decrease in wall temperature along the

length of the combustion chamber, a large increase in the converging section, a maximum

temperature near the throat, and a dramatic decrease in temperature along the length of

the nozzle.

The performance measurements of Figure 6 for the SN. 02 thruster assembly with 60%

FFC displayed monotonic, but non-linear characteristics. In general the performance was

lower than that of the SN. 03 thruster. In Figure 8, a steep drop in wall temperature was

observed with the SN. 02 thruster at 60% FFC for MR below 6.0 which corresponded to a

decrease in performance relative to the performance of the SN. 03 thruster assembly. The

temperature behavior of the SN. 02 thruster assembly for MR above 6.0 in Figure 8 was

similar to that of the SN. 03 thruster shown in Figure 7. However, the profiles which

represent conditions below MR of 6.0 showed an increase in wall temperature along the

length of the combustion chamber. This contrasted to the decrease in wall temperature

observed for thruster assembly SN. 03.

The Ispv data for both thruster assemblies with 75% FFC exhibited dramatic deviations

from the nearly linear trend of the SN. 03 thruster assembly with 60% FFC for MR below

6.0. The temperature profiles at 75% FFC for the two thruster assemblies are shown in

Figures 9 and 10. The temperature profile shapes were similar to those of Figure 7 for

MR above 6.0. However, for tests with MR below 6.0 there was a significant decrease in

wall temperature. In addition, the temperatures along the combustor section did not

decrease as seen in Figure 7, but remained constant at MR conditions below 6.0. The

large decrease in wall temperature seen in Figures 9 and 10 at MR below 6.0 correlated

well with the pronounced performance deviations from the trends of both thruster

assemblies SN. 03 and SN. 02 at 75% FFC.

A close examination of Figures 5 through 10 showed that changes in performance

behavior were strongly correlated with changes in the behavior of the wall temperature

distribution. Significant reduction in wall temperatures consistently occurred below MR

of 6.0 for all tests conditions except for the SN. 03 thruster assembly with 60% FFC. The
11



performancecurves and temperatureprofiles indicated that the SN. 02 and SN. 03
thrusterassembliesoperateddifferently for thesametest conditionswith 60%FFC. The

significant differencesin injector performancesuggestthat small differencesin injector

configurationcan result in significantly different performancecharacteristics.However,
thesedifferencescan be overshadowedby operating at extreme levels of FFC, as is

evidencedby thesimilarity of thethrusterbehaviorfor casesusing75%FFC.

Summary

A laboratorymodelgaseoushydrogen/oxygenthrusterwasdevelopedasa diagnostictool

for investigating low thrust rocket flow fields. The thruster fabrication and diagnostic

techniqueswere proven effective via hot fire testing. Thruster performanceand wall

temperatureand static pressuredistributions were measuredfor two injectors as a
function of both mixture ratio and fuel film cooling rate. The two injectors were

identical in design with the single known exception of a small modification in the

upstreamregionof oneof theinjectors. Testoperatingconditionsincluded60%and75%

fuel film cooling rates,nominalchamberpressuresof 255kPa,370kPa,and500kPa,and
oxidizer to fuel ratiosbetween4.0and8.0.

The thrusterand diagnosticsfabricationand assemblyproceduresprovedto allow easy

and fast repair of all instrumentationas required to ensureaccuratetemperatureand

pressure measurements. Only minor water leaks and transducer failures were
encounteredwhich wererapidly repaired. The instrumentedthrustersustainedhundreds

of hot fire testswith only minor maintenance.

The thrusterdiagnostics were shown to be a practical tool for investigating small rocket

flow fields, and provided local data that was highly representative of the effects of

changing test conditions and injector designs. The local data correlated well with the

global performance data under every test condition and configuration, and indicated that

small rocket behavior was highly dependent upon operating conditions, small changes in

injector design, and changes in fuel film cooling rates.

The degree of azimuthal symmetry was found to be dependent upon operating conditions

for both injectors. This finding may prove critical to the development of accurate rocket

flow field models and requires further investigation to quantify the dependence of injector

azimuthal performance upon operating condition.
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The global and local data showed that the two injectors had distinctly different

performancecharacteristicswith 60%FFC.Becausetheonly knowndifferencebetween

the injectorswasa small modification to the upstreamregion, the results indicate that
smalldifferenceswith injectordesignsmayleadto largedifferencesin performance.

The effectsof varying thefuel film cooling rateswere evaluatedby comparingthedata
trendswith 60% and75% FFC for both injectors.The two injectorsperformedsimilarly

with 75% FFC, and exhibited the same trends with nearly identical temperature

measurements.However, with 60% FFC the data trendswere different thanwhat was
observedwith 75% FFC.This indicatesthattherocket flow field may bedominatedby

theeffectsof thefuel film coolingrateat 75%FFC.

The thrusterdiagnosticswerecapableof providing local datawhich wererepresentative

of rocket flow field processes.The observeddependencyof azimuthal behavior upon

operatingcondition,theperformancedifferencesdueto smallchangesin injectordesigns,
andthesignificanteffectsdueto changesin fuel film cooling mayproveimportantto the

designand modelingof smallrockets.Although the thrusterdiagnosticsdid not provide

quantitativeflow field parameterdata,they identify areaswhich greatlyaffectedthesmall
rocketoperation.Furtherinvestigationof theseareasmayresult in the developmentof
moreaccuratesmallrocketmodelsandyield improvedlow thrustrocketdesigns.
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